
Thermodynamic constraints on fluctuation phenomena

O. J. E. Maroney*
The Centre for Time and The School of Physics, University of Sydney, New South Wales 2006, Australia

and Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario, Canada N2L 2Y5
�Received 16 July 2009; published 31 December 2009�

The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the
existence of a nondecreasing globally unique entropy function form the starting point of many textbook
presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated
with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of
thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional
presentation, extending rather than restricting the domain of validity of the phenomenologically motivated
second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In
a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis
distributions. No particular model of microscopic dynamics need be assumed.
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I. INTRODUCTION

The existence of a globally unique entropy as a function
of thermodynamic state, which is nondecreasing in time, is
one of the central tenets of classical phenomenological ther-
modynamics �1,2�. By contrast, the meaning of entropy
within the context of statistical mechanics seems to defy con-
sensus �see �3,4�, for examples�. Since the start of statistical
mechanics there has been concern that the existence of fluc-
tuation phenomena leads to violations of the second law of
thermodynamics. This may lead to decrease in entropy, the
existence of perpetual motion machines, or maybe even the
inability to define an entropy at all. Maxwell’s demon repre-
sents a persistent strand of thought experiments dedicated to
exploring these possibilities �5–7�.

Most attempts to construct a second law of thermodynam-
ics for statistical mechanics involve one of two strategies:
restrict the domain of validity of the classical statement �usu-
ally to reliable, continuous processes� so as to exclude fluc-
tuation phenomena; or to attempt to derive a new second law
within the domain of statistical mechanics. Here we investi-
gate the possibility of a third approach: to extend the domain
of the phenomenological second law to include, constrain,
and predict the extent of the fluctuation phenomena, which
reduces to the more familiar version if fluctuation phenom-
ena are absent. We find that such an extension seems, in
principle, possible and that with additional work it is pos-
sible to define an entropy function consistent with this. Some
possible relationships of this fluctuation second law to con-
ventional statistical mechanics can be inferred.

The approach of the paper is as follows. Section II briefly
reviews the equivalence of the Kelvin, Clausius, and Carnot
versions of the second law of thermodynamics. Section III
then proposes an extension of the Kelvin version to incorpo-
rate fluctuation phenomena. Logically equivalent generaliza-
tions of the Clausius and Carnot versions are deduced, and
some constraints are deduced about the form of the extended

second law. Section IV reviews the derivation of an entropy
function and shows when the existence of a fluctuation en-
tropy function can be deduced. Finally Section V considers
some relationships to statistical mechanical entropies, includ-
ing the Gibbs and Tsallis �8� entropies.

II. PHENOMENOLOGICAL SECOND LAW

Textbook versions of the second law of thermodynamics
�see, for example, �9,10�� when expressed in terms of heat
flows and heat baths �Fig. 1�, take forms such as the follow-
ing:

�i� Kelvin: no process is possible whose sole result is the
extraction of heat from a heat bath and its conversion to
work.

�ii� Clausius: no process is possible whose sole result is
the transfer of heat from one heat bath to another heat bath at
a higher temperature.

�iii� Carnot heat engine: no heat engine operating between
heat baths at temperatures T1�T2 can operate at an effi-
ciency nE exceeding the efficiency of a reversible heat en-
gine: nE�nCE=1−T1 /T2.

�iv� Carnot heat pump: no heat pump operating between
heat baths at temperatures T1�T2 can operate at an effi-
ciency nP exceeding the efficiency of a reversible heat pump:
nP�nCP=T2 / �T2−T1�.

Demonstration of the logical equivalence of each pair of
these statements can easily be found in a textbook such as

*o.maroney@usyd.edu.au

(b)(a)

FIG. 1. Reliable heat pumps and engines.
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�10�. The equivalence is typically proven by the means of
diagrams such as in Fig. 2. This diagram shows the combi-
nation of heat engine and heat pumps being used to attempt
violations of the Kelvin and Clausius statements. Figure 2�a�
shows that if a heat pump can operate with efficiency np
=Qc /Wp�nCP=Qc /Wc, then in combination with a revers-
ible heat engine operating at nCE=Wc /Qc there is a net con-
version of Wc−Wp�0 heat from the lower temperature heat
bath into work, violating the Kelvin statement. Similarly Fig.
2�b� shows a heat engine operating with efficiency ne
=Wc /Qe�nCE=Wc /Qc can be combined with a reversible
heat pump operating at nCP=Qc /Wc could transfer heat Qc
−Qe�0 from a colder to hotter heat bath without requiring
work, thus violating the Clausius statement. It should be
noted that this demonstration requires a number of usually
unstated assumptions, such as the absence of negative tem-
peratures. In particular, the equivalence requires it to be
physically possible to construct a reversible heat engine or
pump. For example, if it were not physically possible to
build a heat engine whose efficiency could reach that of a
theoretical reversible heat engine, then it would not necessar-
ily follow that a real heat pump exceeding the Carnot effi-
ciency could violate the Kelvin or Clausius versions of the
second law.1

The problem arises that fluctuation phenomena, such as
Brownian motion, do, in principle, violate all these state-
ments of the second law when probabilistic processes are
allowed. Attempts to define a modified second law will typi-
cally restrict the domain of validity. It may be suggested that
the second law only applies to the thermodynamic limit of an
infinite number of atoms, where fluctuations become negli-
gible or it may be suggested that the second law only applies
to continuous or reliable processes:

�i� No reliable process is possible whose sole result is the
extraction of heat from a heat bath and its conversion to
work.

�ii� No process is possible with probability one whose sole
result is the extraction of heat from a heat bath and its con-
version to work.

�iii� No continuously operating process is possible whose
sole result is the extraction of heat from a heat bath and its
conversion to work.

�iv� No process is possible whose sole result is, on aver-
age, the extraction of heat from a heat bath and its conver-
sion to work.

Restricting the domain of validity in this way, however,
proves unable to provide answers to many interesting ques-
tions about the thermodynamic consequences of fluctuation
phenomena. Can systems with a finite number of atoms be
used to continuously reliably convert heat to work? If a pro-
cess can succeed with probability less than one, how much
work can be extracted? If a process only operates for a finite
amount of time how much work can be extracted? Can it be
arbitrarily large? Can a process exist which can extract an
arbitrarily large quantity of work with probability arbitrarily
close to one, while still failing on average due to catastrophic
failure when it does fail?

This can be illustrated by considering a hypothetical fam-
ily of processes, parametrized by N�1. Process N will, with
probability 1− 1

N , generate N units of work from heat but
with probability 1

N it requires N2 units of work to be dissi-
pated. The mean work produced is −1, regardless of the
value of N, but as N→� arbitrarily large amounts of work
are produced with probability arbitrarily close to one. Even
more extreme examples can easily be constructed. Such a
family of processes satisfies several of the restricted laws
above but does not accord with our experience of fluctuation
phenomena.

III. FLUCTUATIONS AND THE SECOND LAW

In this section the main argument of the paper will be
explored. Rather than follow the path of the modifications in
Sec. II, restricting the domain of validity of the second law
so as to exclude fluctuation phenomena, it will instead be
expanded to include fluctuation phenomena. Fluctuations
will be treated as being probabilistic processes, occurring
with probability less than one. The modified law should set a
constraint upon the size of fluctuations that can occur and
should reduce to the fluctuation-free second law when only
deterministic processes occur.

The proposed modification to the phenomenological sec-
ond law is based upon nothing more than the observation
that the greater the size of the fluctuation, the less probable
its occurrence. From this it is proposed that, for a given size
of fluctuation, there is a maximum possible likelihood of it
occurring:

There is no cyclic process2 whose sole result is the extrac-
tion of a quantity of heat, Q, from a heat bath at temperature
T and its conversion to work, which can occur with probabil-
ity p, unless

p � f�Q,T� , �1�

where f is a function whose properties will be deduced from
internal consistency. The definition is such that it is assumed

1Suppose for all real heat engines ne�nmax�nCE. All that could
be implied would be that the efficiency of real heat pumps were
bounded by np�1 /nmax but 1 /nmax�nCP. Note that such a heat
pump, with np�nCP, would not be possible to operate reversibly as
a heat engine.

2When discussing probabilistic cycles, a cyclic process will mean
a process which returns to its original state with probability p but
with probability 1− p may end up in a different state to its starting
point.

(b)(a)

FIG. 2. Equivalencies of violations of second laws.
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for any given Q and T there exists an actual physical pro-
cesses which can get arbitrarily close to occurring with prob-
ability f�Q ,T�. If not, then there must exist a lower value of
f that should have been used instead.

It is possible to immediately note some properties of f: as
the function bounds a probability, it cannot become negative;
it is always possible to dissipate work as heat; if there is a
process that extracts Q��Q with probability p, then by also
dissipating work W=Q�−Q, there is a process that extracts Q
with probability p. These immediately constrain the follow-
ing function:

f�Q,T� � 0, �2�

f�Q,T� = 1 ∀ Q � 0, �3�

f�Q,T� � f�Q�,T� ∀ Q� � Q . �4�

The last condition implies that if f is also a differentiable
function of Q, then

� f

�Q
� 0 ∀ Q . �5�

One trivial solution would be f�Q ,T�=0, ∀ Q�0. This
would correspond to all fluctuations being forbidden. At the
other extreme, f�Q ,T�=1, ∀ Q would imply one could get
arbitrarily close to any size of fluctuation, at any probability.

This is a more restrictive condition than the mean conver-
sion of heat to work over cycle being negative although it
does imply it. The proof of this is straightforward. If there
exists a process which can produce a positive expectation
value for production of work over a single cycle, then repeat-
ing that cycle a large number of times produces an expecta-
tion value as large as one likes, with a Gaussian spread
around that mean. The probability that any given quantity of
work can be exceeded becomes close to one. Hence any
process which can produce a positive expectation value for
work will, on repeated application, exceed any function f
�1.

This kind of fluctuation—extracting work from a single
heat bath—will be called a Kelvin fluctuation and be repre-
sented as in Fig. 3�a�, showing W work being extracted from
a heat bath at temperature T1.

The equivalence of Kelvin fluctuations to other kinds of
fluctuations will now be demonstrated.

A. Kelvin and Clausius fluctuations

A Clausius fluctuation, as in Fig. 3�b�, will denote the
spontaneous transfer of Q work from a heat bath at T1 to a
heat bath at T2�T1 occurring with a maximum probability
fC�Q ,T1 ,T2�. One way to achieve a Clausius fluctuation is
given in Fig. 4�a�, combining a Kelvin fluctuation with a
reliable Carnot pump operating at efficiency nCP=Q /W
=T2 / �T1−T2�. This can occur with probability f�W ,T1� so
fC�Q ,T1 ,T2� cannot be less than this: fC�Q ,T1 ,T2�
� f�W ,T1�= f�Q /nCP ,T1�. A Kelvin fluctuation can similarly
�Fig. 4�b�� be created from a Clausius fluctuation, by allow-
ing the heat Q from the Clausius fluctuation to drive a reli-
able Carnot engine at efficiency nCE=W /Q=1−T1 /T2. This
implies fC�Q ,T1 ,T2�� f�W ,T1�= f�QnCE ,T1� and nCE
=1 /nCP establishes

fC�Q,T1,T2� = f� Q

nCP
,T1� = f�QnCE,T1� = f�Q�1 −

T1

T2
�,T1� .

�6�

B. Kelvin, Clausius, and heat pump fluctuations

A fluctuation heat pump �Fig. 5�a�� is a heat pump that is
able to operate with a higher efficiency than a reversible
Carnot heat pump but only with a probability less than one of
success. The maximum probability of success
fP�W ,nP ,T1 ,T2� of achieving efficiency nP= Q

W �nCP can be
deduced either from the Kelvin fluctuation law �Fig. 6� or the
Clausius fluctuation law �Fig. 7�. In Fig. 6�a�, creating a
fluctuation pump with efficiency nP= Q

W �nCP, by augment-
ing the behavior of a regular Carnot pump with a Kelvin
fluctuation shows fP�W ,nP ,T1 ,T2�� f�Q1 ,T1�. In Fig. 6�b�,

(b)(a)

FIG. 3. Kelvin and Clausius fluctuations

(b)(a)

FIG. 4. Converting Kelvin and Clausius fluctuations.

(a)nP = Q
W

> nCP (b)nE = W
Q

> nCE

FIG. 5. Fluctuation heat pumps and engines.
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creating a Kelvin fluctuation of size Q1, by extracting the
heat pumped by fluctuation heat pump at efficiency nP= Q

W
�nCP and using it to drive a Carnot heat engine gives
f�Q1 ,T1�� fP�W ,nP ,T1 ,T2�. Substituting Q1nCP=W�nP
−nCP� gives

fP�W,nP,T1,T2� = f�W� nP

nCP
− 1�,T1� . �7�

Figure 7�a� augments the Carnot heat pump with a Clausius
fluctuation of size Q1 to create a fluctuation pump of effi-
ciency nP= Q

W �nCP. Now using the work extracted from a
Carnot engine to drive a fluctuation heat pump, gives a Clau-
sius fluctuation in Fig. 7�b�. Combined fP�W ,nP ,T1 ,T2�
= fC�Q1 ,T1 ,T2� with Q1=W�nP−nCP� so

fP�W,nP,T1,T2� = fC�W�nP − nCP�,T1,T2� . �8�

It can be easily confirmed that this is consistent with the
relationship fC�Q ,T1 ,T2�= f�Q /nCP ,T1�.

C. Kelvin, Clausius, and heat engine fluctuations

Similarly, a fluctuation heat engine �Fig. 5�b�� is a heat
engine that can operate with a higher efficiency than a re-
versible Carnot heat engine but only with a probability less
than one of success.

Augmenting a Carnot heat engine with a Kelvin fluctua-
tion of size Q1 �Fig. 8�a�� creates a fluctuation heat engine,
while using the heat pumped by a regular Carnot pump to
drive a fluctuation heat engine �Fig. 8�b�� creates an equiva-
lent Kelvin fluctuation. Giving the maximum probability
achievable for a fluctuating heat engine to extract heat Q
from a heat bath at temperature T2, with efficiency nE= W

Q
�nCE, depositing the remainder in a heat bath at temperature

T1�T2 as fE�Q ,nE ,T1 ,T2�, the diagrams quickly yield Q1
=Q�nE−nCE� and the relationship

fE�Q,nE,T1,T2� = f�Q�nE − nCE�,T1� . �9�

Figure 9 provides the equivalent analysis for Clausius fluc-
tuations, now creating a Clausius fluctuation by driving a
regular Carnot pump with the work extracted by a fluctuation
heat engine. As Q1nCE=Q�nE−nCE�

fE�Q,nE,T1,T2� = fC�Q� nE

nCE
− 1�,T1,T2� . �10�

Again, this is consistent with the relationship between fC and
f .

D. Heat pumps and engines

It is now possible to compare the expressions for
fE�Q ,nE ,T1 ,T2� and fP�W ,nP ,T1 ,T2� directly. This gives
fE�Q ,nE ,T1 ,T2�= fP�W ,nP ,T1 ,T2� if W�nP /nCP−1�=Q�nE
−nCE�. To confirm consistency this can also be derived from
the diagrams in Fig. 10. In Fig. 10�a�, a fluctuation heat
engine, operating at nE=We /Qe improves the efficiency of a
Carnot heat pump by using some of the pumped work to
return a higher proportion of the heat into work to create a
fluctuation heat pump with efficiency nP=Qp /Wp. In Fig.
10�b�, a fluctuation heat pump, with efficiency nP=Qp /Wp
improves the efficiency of a Carnot heat engine to create a
fluctuation heat engine with efficiency nE=We /Qe. It can
readily be confirmed that W�nP /nCP−1�=Q�nE−nCE�.

E. Heat and temperature

There remains six diagrams for fluctuations involving two
heat baths. These diagrams determine the relationship be-
tween Kelvin fluctuations at different temperatures. Figure
11 shows how a Kelvin fluctuation can be converted to an

(a) (b)

FIG. 6. Kelvin fluctuations and fluctuation heat pumps.

(b)(a)

FIG. 7. Clausius fluctuations and fluctuation heat pumps

(b)(a)

FIG. 8. Kelvin fluctuations and fluctuation heat engines.

(b)(a)

FIG. 9. Clausius fluctuations and fluctuation heat engines.
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equivalent Kelvin fluctuation at a higher or lower tempera-
ture by using a Carnot pump or engine. This supplies heat
from a second bath to replace the heat obtained from the
fluctuation. The overall process is then a Kelvin fluctuation
from the second heat bath.

From Fig. 11�a�, it can be seen that the probability of
obtaining a Kelvin fluctuation of size Q2 at temperature T2
cannot be less that the probability of obtaining a Kelvin fluc-
tuation of size Q1 at temperature T1, provided Q1 /T1
=Q2 /T2;

f�Q2,T2� � f�Q1,T1� . �11�

Figure 11�b� shows the reverse process, for which f�Q2 ,T2�
� f�Q1 ,T1� so f�Q1 ,T1�= f�Q2 ,T2� when Q1 /T1=Q2 /T2.
Writing �=T1 /T2 this leads to f�Q ,T�= f��Q ,�T�. As this
must hold for all T1 and T2, and so for all �

f�Q,T� = f�Q

T
� . �12�

The remaining four diagrams are essentially the same as the
diagrams in Figs. 4, 6�b�, and 8�b�, except they involve a
Kelvin fluctuation from the higher temperature heat bath.
Comparison of these processes again leads to Eq. �12�.

F. Fluctuation friendly second law

Combining the result from Sec. III E, with those from
Secs. III A–III D, it is now possible to state the fluctuation
compatible generalizations of the formulations of the second
law of thermodynamics given in Sec. II:

�i� Kelvin: there is no process whose sole result is the
extraction of a quantity of heat, Q, from a heat bath at tem-
perature T and its conversion to work, which can occur with
probability p, unless

p � f�Q

T
� .

�ii� Clausius: there is no process, whose sole result is the
extraction of a quantity of heat, Q, from a heat bath at tem-
perature T1 and its transfer to a heat bath at temperature T2
�T1, which can occur with probability p, unless

p � f�Q� 1

T1
−

1

T2
�� .

�iii� Heat engine: there is no cyclic process, operating
solely as a heat engine between heat baths at temperatures
T2�T1, which can extract a quantity of heat, Q, from the
hotter heat bath, with efficiency nE exceeding that of a reli-
able, reversible heat engine, nCE, with probability p, unless:

p � f� Q

T1
�nE − nCE�� .

�iv� Heat pump: there is no cyclic process, operating
solely as a heat pump between heat baths at temperatures
T2�T1, which can use a quantity of work, W, with efficiency
nP exceeding that of a reliable reversible heat engine, nCP,
with probability p, unless

p � f�W

T1
� nP

nCP
− 1�� .

These four formulations are logically equivalent, in the same
manner that the four formulations of the fluctuation-free sec-
ond law given in Sec. II are logically equivalent.

G. Kelvin-Clausius inequality

These four formulations can be expressed in the same
way. Combining a single fluctuation with Carnot pumps and
engines connecting heat baths at multiple temperatures re-
veals that there is a more general formulation of the fluctua-
tion laws. Just as all four of the normal phenomenological
laws may be seen as special cases of the law.

There is no process, whose sole result is the extraction of
quantities of heat, Qi, from heat baths at temperatures Ti
converting the net heat extracted into work, unless

	
i

Qi

Ti
� 0 �13�

so all of the fluctuation laws are special cases.
There is no process whose sole result is the extraction of

quantities of heat, Qi, from heat baths at temperatures Ti
converting the net heat extracted into work, which can occur
with probability p, unless

p � f�	
i

Qi

Ti
� . �14�

The general formulation should make clear the role that Car-
not cycles plays within the derivation of the specific fluctua-
tion laws. Carnot pumps and engines connecting a number of
different heat baths are able to reversibly move heat between
them in any combination provided the net effect is 	iQi /Ti

(b)(a)

FIG. 10. Fluctuation heat pumps and engines.

(b)(a)

FIG. 11. Kelvin fluctuations at different temperatures.
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=0. Any given fluctuation can therefore be converted into
another fluctuation, involving different heat baths but which
has the same value of 	iQi /Ti.

H. Combining fluctuations

The next stage is to consider combining fluctuations by
diagrams involving more than one fluctuation. As it turns
out, only two diagrams, Fig. 12 are required to deduce the
general relationship.

In Fig. 12�a� there is a single Kelvin fluctuation resulting
in Q1+Q2 heat extracted from a heat bath at temperature T.
One possible way of this happening is if two independent
processes occur each from heat baths at temperature T, re-
sulting in two separate Kelvin fluctuations, extracted Q1 and
Q2 heat, respectively. Figure 12�b� gives a process by which
Q1+Q2 can be extracted so the minimal probability of a
Kelvin fluctuation of that size cannot be less that the prob-
ability of the two independent fluctuations both occurring:

f�Q1

T
+

Q2

T
� � f�Q1

T
� f�Q2

T
� . �15�

As this must happen for all Q1 ,Q2 ,T the fluctuation law
must satisfy the general functional inequality3

f�x + y� � f�x�f�y� . �16�

This leads directly to the general equation

f�	
i

Qi

Ti
� � 


i

f�Qi

Ti
� �17�

that would also be deduced from considering diagrams with
multiple fluctuations and with Carnot pumps and engines
operating between multiple heat baths.

This property in itself can be used to demonstrate that if
there exists some x=x0�0 such that f�x0�=0 then it must be
the case that ∀ x�0, f�x�=0, i.e., fluctuations must be pos-
sible at all scales, if they are possible on any scale. Intu-
itively this should be obvious: provided a small fluctuation
can occur with a nonzero probability, p, then accumulating n
such fluctuations into a fluctuation n times large is always
possible with probability pn. Any size of fluctuation may
occur with small but nonzero probability provided n is large
enough.

If it were the case that accumulating small fluctuations
was the optimum process for obtaining a large fluctuations,
then

f�	
i

Qi

Ti
� = 


i

f�Qi

Ti
� . �18�

This requires f�x+y�= f�x�f�y�. Provided f is a continuous
function, this has a unique solution:

f�	
i

Qi

Ti
� = e−��	iQi/Ti�, �19�

where � is a universal constant whose value would need
determining experimentally to be the reciprocal of Boltz-
mann’s constant: �=k−1.

It is, perhaps, surprising that such a familiar function
within statistical mechanics might be obtained from the
purely phenomenological arguments followed here. Unfortu-
nately, there seems no strong reason to demand that a large
fluctuation cannot, in principle, be more probable than get-
ting an equivalent sized fluctuation through the accumulation
of a large number of small fluctuations. It may, on the argu-
ments considered so far, simply be the case that large fluc-
tuations can spontaneously occur with a higher probability.

Equation �19� is not the only possibility. The restrictions
on the form of f�x� are

f�x� � 0, �20�

f�x� = 1 ∀ x � 0, �21�

� f

�x
� 0 ∀ x � 0, �22�

f�x + y� � f�x�f�y� ∀ x,y � 0. �23�

Other functions which could satisfy all these requirements
include:

�1�

f�x� =
1

1 + 	nanxn �24�

will satisfy all the conditions specified whenever n !an
�m ! l !amal for all n=m+ l. Specific cases include

�a� n !an=m ! l !amal. This leads to an= �a1�n /n!

fe�x� = e−a1x. �25�

�b� For all n�1, let an=0

f i�x� =
1

1 + a1x
. �26�

�c� If some f�x� that satisfies the conditions, then g�x�
= fn�x�, with n�1 will satisfy the conditions, so

fq�x� =
1

�1 + a1x�1/a1
, �27�

with 0�a1�1.
�2� An even slower falling function such as

3This may be converted into a more familiar form using F�x�=
−ln�f�x�� to get F�x�+F�y��F�x+y�. In passing, it may also be
noted that if f�x� is differentiable, then it can be shown from Eq.
�16� that f��x�� f�x�f��0� and f��0�� f��0�2.

(b)(a)

FIG. 12. Combining Kelvin fluctuations.
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f l�x� =
1

1 + ln�1 + ax�
�28�

can also satisfy the requirements.

IV. FLUCTUATIONS AND ENTROPY

In Sec. III it was shown that the Kelvin-Clausius-Carnot
versions of the second law formulated in terms of cyclic
processes and heat baths can be generalized in a consistent
way to include fluctuation phenomena. However, phenom-
enological thermodynamics does not become genuinely pow-
erful until Eq. �13� is used to define a nondecreasing, global
function of state called entropy. With fluctuations possible, it
is clear that any such globally defined function of state can
decrease with some probability. In this section it is shown
that it is still possible to define a meaningful entropy func-
tion, with a relationship to the fluctuation law in Eq. �14�.

A. Phenomenological entropy

The Kelvin-Clausius inequality: there is no process,
whose sole result is the extraction of quantities of heat, Qi,
from heat baths at temperatures Ti converting the net heat
extracted into work, unless

	
i

Qi

Ti
� 0,

immediately implies that, if there exists a process, whose
sole result is to transform state A into state B while extract-
ing quantities of heat, Qi

�AB�, from heat baths at temperatures
Ti, then there is no process whose sole result can be to trans-
form state B into state A, while extracting quantities of heat,
Qi

�BA�, from heat baths at temperatures Ti unless

	
i

Qi
�AB�

Ti
+ 	

j

Qi
�BA�

Ti
� 0. �29�

It is a straightforward mathematical construction �see the Ap-
pendix� to show this implies the existence of a nonempty
convex4 set of functions of state, �S	�X��, which each satisfy
the following condition.

If there exists a process, whose sole result is to transform
state A into state B while extracting quantities of heat, Qi

�AB�,
from heat baths at temperatures Ti, then

S	�A� � S	�B� − 	
i

Qi
�AB�

Ti
. �30�

The functions S	�X� will be referred to as thermodynamic
entropies.

The expression of the phenomenological second law, in
terms of these thermodynamic entropies, is there exist func-
tions of the thermodynamic state �S	�X��, such that for any
two thermodynamic states A and B, there is no process
whose sole result is to transform state A into state B while

extracting quantities of heat Qi
�AB�, from heat baths at tem-

peratures Ti unless

S	�A� � S	�B� − 	
i

Qi
�AB�

Ti
�31�

for all S	�X�.
In an adiabatic process, no heat is extracted or generated

in any heat bath so this requires S	�A��S	�B�. As this result
must also hold for processes which transform B into A, then

	
i

Qi
�AB�

Ti
� S	�B� − S	�A� � − 	

i

Qi
�BA�

Ti
. �32�

This must hold for all processes so the set �S	�X�� is bounded
by the processes which maximize the quantities 	iQi

�AB� /Ti

and 	iQi
�BA� /Ti.

If the two states A and B can be connected by a reversible
cycle, then the maximum reached is

	
i

Qi
�AB�

Ti
+ 	

i

Qi
�BA�

Ti
= 0 �33�

in which case the entropy difference between the two states
is fixed to be the same value for all functions in �S	�X��:

S	�B� − S	�A� = 	
i

Qi
�AB�

Ti
= − 	

i

Qi
�BA�

Ti
. �34�

If all states can be connected by reversible cycles, then there
is a single function, unique up to an additive constant. It is
important to note that reversibility is required for the unique-
ness of the entropy function but is not necessary to prove the
existence of a nondecreasing set of entropy functions.

B. Fluctuation entropy law

The existence of the fluctuation law does not prevent the
derivation of the existence of the thermodynamic entropy
functions �S	�X��. Their significance is restricted to reliable
�i.e., probability one� processes. Unfortunately it does not
immediately follow that a fluctuation law can be deduced
constraining the probability of a reduction in thermodynamic
entropy.

An essential stage in the deduction of a law relating en-
tropy to fluctuations, is the identification of an appropriate
inequality for closed cycles incorporating any two states,
such as Eq. �29�, but for cycles involving fluctuations. Such
an inequality cannot be directly obtained from the fluctuation
law.

The fluctuation law �Eq. �14�� implies that, if there exists
a process, whose sole result is to transform state A, into state
B, while extracting quantities of heat, Qi

�AB�, from heat baths
at temperatures Ti and which can occur with probability pAB,
then there is no process whose sole result can be to transform
state B into state A, while extracting quantities of heat, Qi

�BA�,
from heat baths at temperature Ti, which can occur with
probability pBA, unless

4For any two S ,S�� �S	�X�� then for any 0� p�1, it is the case
that pS+ �1− p�S�� �S	�X��.
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pABpBA � f�	
i

Qi
�AB�

Ti
+ 	

i

Qi
�BA�

Ti
� . �35�

Inverting the function gives

f−1�pABpBA� � 	
i

Qi
�AB�

Ti
+ 	

i

Qi
�BA�

Ti
. �36�

However, the relationship f�x+y�� f�x�f�y� when inverted
yields

f−1�pq� � f−1�p� + f−1�q� , �37�

and this does not allow the deduction of a suitable inequality.

1. Reliable paths

To proceed further, it is necessary to consider reliable
paths between A and B. Let qi

�AB� be the heat generated in
heat baths at temperatures Ti for a process that can occur
with probability one and whose sole effect, apart from ex-
tracting heat from heat baths and converting them to work, is
to transform state A into state B. It follows that there is no
process whose sole result is to transform state B into state A
while extracting quantities of heat Qi

�BA� from heat baths at
temperatures Ti, which can occur with probability pBA, unless

f−1�pBA� � 	
i

qi
�AB�

Ti
+ 	

i

Qi
�BA�

Ti
. �38�

Similarly, if qi
�BA� is the heat generated in heat baths at tem-

peratures Ti, for a process that can occur with probability one
whose sole effect, apart from extracting heat from heat baths
and converting them to work, is to transform state B into
state A, then there is no process whose sole result is to trans-
form state A into state B, while extracting quantities of heat
Qi

�AB� from heat baths at temperatures Ti, which can occur
with probability pAB, unless

f−1�pAB� � 	
i

Qi
�AB�

Ti
+ 	

i

qi
�BA�

Ti
. �39�

It is immediately possible to deduce both that

	
i

qi
�AB�

Ti
+ 	

i

qi
�BA�

Ti
� 0 �40�

�by using a process for which either pAB=1 or pBA=1� and
that

f−1�pAB� + f−1�pBA� � 	
i

Qi
�AB� + qi

�BA� + qi
�AB� + Qi

�BA�

Ti
.

�41�

Equation �40� implies the existence of the thermodynamic
entropies �S	�X�� as before. Equation �41� implies the exis-
tence of a convex set of functions of state �S
�X��, which
will be called the fluctuation entropies and which all satisfy

	
i

Qi
�AB� + qi

�AB�

Ti
− f−1�pAB� � S
�B� − S
�A� � f−1�pBA�

− 	
i

Qi
�BA� + qi

�BA�

Ti
. �42�

In order to narrow down the range of permissible entropies,
the terms 	iqi

�AB� /Ti and 	iqi
�BA� /Ti should each be as large as

possible, subject to the constraint of Eq. �40�.
This produces the following entropy fluctuation law.
Let Qi

�AB� be the heats extracted from heat bath at tem-
peratures Ti by a process, which occurs with probability one,
whose sole other result is to transform state A into state B,
and which maximizes the value of 	iQi

�AB� /Ti over all such
processes.

There exists single valued functions of state �S
�X��, such
that, if there exists a process occurring with probability p,
whose sole result is to transform state A into state B, while
extracting quantities of heat, Qi

�AB�, from heat baths at tem-
peratures Ti, then

S
�A� � S
�B� + f−1�p� − 	
i

Qi
�AB�

Ti
− 	

i

Qi
�AB�

Ti
. �43�

To restrict these to a unique function S
�X� requires that
there exist cycles5 for which

f−1�pAB� + f−1�pBA� = 	
i

Qi
�AB� + Qi

�AB� + Qi
�BA� + Qi

�BA�

Ti
.

�44�

2. Reversible paths

If it is the case that the equality in Eq. �40� is met, then
Eq. �41� takes the form

f−1�pAB� + f−1�pBA� � 	
i

Qi
�AB�

Ti
+ 	

i

Qi
�BA�

Ti
�45�

and

	
i

Qi
�AB�

Ti
− f−1�pAB� � S
�B� − S
�A� � f−1�pBA� − 	

i

Qi
�BA�

Ti
.

�46�

This is not sufficient to ensure S
�B�−S
�A� is unique. How-
ever, in this case, it is possible to deduce the existence of the
globally unique thermodynamic entropy from the reliable
paths

S	�B� − S	�A� = 	
i

Qi
�AB�

Ti
= − 	

j

Qi
�BA�

Ti
, �47�

for which Eqs. �38� and �39� give

5When dealing with fluctuations, a cycle is a process for which the
system starts in state A with certainty, reaches the state B with
probability pAB, and then the conditional probability for returning to
state A, given that it reached state B, is PBA.
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i

Qi
�AB�

Ti
− f−1�pAB� � S	�B� − S	�A� � f−1�pBA� − 	

i

Qi
�BA�

Ti

�48�

and S	�X�� �S
�X��. If both S	�X� and S
�X� are uniquely

defined, then 	i
Qi

�AB�

Ti
− f−1�pAB�+	i

Qi
�BA�

Ti
− f−1�pBA�=0, in

which case S	�X�=S
�X�. However, in general, if the thermo-
dynamic entropies �S	�X�� are not restricted to a single glo-
bally unique function, then there may exist S	�X�� �S
�X��.

It is worth noting that Eq. �48� implies

	
i

Qi
�AB�

Ti
− f−1�pAB� + 	

i

Qi
�BA�

Ti
− f−1�pBA� � 0. �49�

If, on the other hand, Eq. �44� holds for fluctuation cycle, for
which also 	iqi

�AB� /Ti+	iqi
�BA� /Ti�0, then this requires

	
i

Qi
�AB�

Ti
− f−1�pAB� + 	

i

Qi
�BA�

Ti
− f−1�pBA� � 0. �50�

In other words, if there exist any fluctuations from state A to
state B and vice versa that can define a unique fluctuation
entropy difference S
�B�−S
�A� when combined with a reli-
able but irreversible cyclic path between A and B, then it
must be the case that there are no reliable, reversible cyclic
paths between states A and B. The existence of a globally
unique S
�X� that is not simultaneously a globally unique
S	�X� would imply reliable reversible processes cannot exist.

Reliable reversible cycles imply an entropy fluctuation
law. There exists single valued functions of state �S
�X��,
such that, if there exists a cyclic process, occurring with
probability one, operating between states A and states B,
with a zero net extraction of heat over the cycle, then for any
other process, occurring with probability p, whose sole result
is to transform state A into state B, while extracting quanti-
ties of heat, Qi

�AB�, from heat baths at temperatures Ti then

S
�A� � S
�B� + f−1�p� − 	
i

Qi
�AB�

Ti
, �51�

and there is a globally unique thermodynamic entropy
S	�X�� �S
�X��.

3. Exponential statistics

Finally, note that if the fluctuation law takes the exponen-
tial form discussed in Sec. III H, then

f−1�pq� = f−1�p� + f−1�q� �52�

so Eq. �36� leads immediately to

f−1�pAB� + f−1�pBA� � 	
i

Qi
�AB�

Ti
+ 	

j

Qj
�BA�

Tj
. �53�

This gives Eq. �48� without needing the existence of reliable
paths. This implies there exists a convex set of fluctuation
entropies �S��X��� �S
�X�� satisfying

	
i

Qi
�AB�

Ti
− f−1�pAB� � S��B� − S��A� � f−1�pBA� − 	

j

Qj
�BA�

Tj
.

�54�

Uniquely defining an S��X� entropy would require
	iQi

�AB� /Ti− f−1�pAB�+	 jQj
�BA� /Tj − f−1�pBA�=0, but this does

not necessarily uniquely define either S
�X� or S	�X�. In this
case, however, if a unique S
�X� does exist then it is neces-
sarily equal to a unique S	�X� and vice versa.

V. FROM FLUCTUATIONS TO STATISTICAL MECHANICS

The possible relationship of the fluctuation spectrum f to
statistical mechanics will now be briefly explored. It will be
assumed throughout this section that a globally unique en-
tropy S�X�=S	�X�=S
�X� can be determined, and only a
single heat bath at temperature T will be used. The entropy
fluctuation law now takes the form.

There exists a single valued function of state S�X�, such
that for any process, occurring with probability p, whose sole
result is to transform state A into state B, while extracting
quantities of heat, Q�AB�, from heat baths at temperatures T
then

S�A� � S�B� + f−1�p� −
Q�AB�

T
. �55�

Suppose the system is in an initial state with entropy S, in-
ternal energy E, and is subject to a process during which it
fluctuates to state � with probability p�. During the course of
the process, heats Q� are generated in heat baths at tempera-
tures T and requires work W� to be performed.

By conservation of energy, the internal energy of state �
is

E� = E + W� − Q�. �56�

By the entropy fluctuation law, the entropy of state � must
obey

S � S� + f−1�p�� −
Q�

T
. �57�

This equation must hold for each possible fluctuation away
from the initial state so that

S � 	
�

p��S� + f−1�p�� −
Q�

T
� �58�

necessarily holds. The form of this constraint is very sugges-
tive of entropy functions that occur in statistical mechanics.

A. Maximal fluctuations

The definition of the f function is such that there must
exist some process for which the equality in Eq. �57� is met:

S = S� + f−1�p�� −
Q�

T
, �59�
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p� = f��S −
E

T
� − �S� −

E� − W�

T
�� . �60�

However, there is no guarantee that a single process can exist
which achieves the maximum fluctuation for every possible
outcome. If such a process did exist, then

S = 	
�

p��S� + f−1�p�� −
Q�

T
� �61�

would hold.
This similarity to statistical mechanics is brought even

closer under two conditions:
�1� If a set of maximal fluctuations occur which do not

generate heat, on average, then 	�p�
Q�

T =0. The entropy for-
mula then becomes

S = 	
�

p��S� + f−1�p��� . �62�

�2� If a set of maximal fluctuations can take place, without
requiring external work to be performed �W�=0� then

p� = f��S −
E

T
� − �S� −

E�

T
�� �63�

or p�= f�
F−F�

T �, where

F = TS − E , �64�

F� = TS� − E�. �65�

B. Example fluctuation laws

Let us consider the functions from Sec. III H:
�1� f�x�=1 / �1+	nanxn�.
�a� fe�x�=e−a1x. This generates the familiar Gibbs canoni-

cal statistics:

fe
−1�p� = −

1

a1
ln p , �66�

S = 	
�

p�S� −
1

a1
p� ln p�, �67�

p� =
1

Ze
e−a1F�/T, �68�

with Ze=ea1F/T=	�e−a1F�/T.
�b� f i�x�= �1+a1x�−1:

f i
−1�p� =

1

a1
�p−1 − 1� , �69�

S = 	
�

p�S� −
1

a1
�N − 1� , �70�

p� =
1

Zi
�1 + a1�F��−1, �71�

with N as the number of distinct states in the summation,
Zi= �1+a1F� and �=1 / �TZi�.

�c� fq�x�= �1+a1x�−1/a1. This generates statistics similar to
the Tsallis nonextensive entropies;

fq
−1�p� =

1

a1
�p−a1 − 1� , �72�

S = 	
�

p�S� −
1

a1
�1 − 	

�

p�
1−a1� , �73�

p� =
1

Zq
�1 + a1�F��−1/a1, �74�

with Zq= �1+a1F /T�1/a1 and �=1 / �TZq
a1�.

�2� The slowly falling function f l�x�= �1+ln�1+ax��−1

yields

f l
−1�p� =

1

a1
�e�p−1−1� − 1� , �75�

S = 	
�

p�S� +
1

a1
�	

�

p�e�p−1−1�� −
1

a1
, �76�

p� =
1

Zl
�1 + ln�1 + a1�F��1/Zl�−1, �77�

with Zl=1+ln�1+a1F /T� and �=eZl−1 /T

VI. CONCLUSION

Starting from the physical intuition that larger thermal
fluctuations must be less probable than smaller fluctuations,
we have suggested a fluctuation law that states that for any
given size of fluctuation, there is a nontrivial maximum
probability of it occurring. This simple suggestion proves
surprisingly fruitful. The equivalence of the Kelvin, Clau-
sius, and Carnot formulations of the phenomenological sec-
ond law of thermodynamics is shown to naturally generalize
to the fluctuation law and further constrain it to be of the
form.

There is no process, whose sole result is the extraction of
quantities of heat, Qi, from heat baths at temperatures Ti
converting the net heat extracted into work, which can occur
with probability p, unless

p � f�	
i

Qi

Ti
� , �78�

with the function f further constrained by the requirement

f�	
i

Qi

Ti
� � 


i

f�Qi

Ti
� . �79�

If the underlying dynamics is found to be such that larger
fluctuations can only occur through the accumulation of
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smaller fluctuations, then this requires the function to have
the exponential form:

f�	
i

Qi

Ti
� = e−��	iQi/Ti�. �80�

It is interesting to note that the phenomenologically moti-
vated approaches of Szilard and of Tisza and Quay �11,12� to
statistical mechanics derive the canonical distribution by
making a similar assumption �see also �13��.

We have further shown that the deduction of the existence
of a nondecreasing thermodynamic entropy function of state
may still be followed to derive a fluctuation entropy function
of state. Under a similar kind of circumstance for which the
thermodynamic entropy can be deduced to be globally
unique, then the fluctuation entropy can be deduced to be
globally unique. Furthermore, if the thermodynamic and
fluctuation entropies are both globally unique, then they are
necessarily identical �up to an additive constant�. This holds
out hope that more rigorously axiomatic developments of the
thermodynamic entropy, such as that of Lieb and Yngvason
�1�, may be generalized in a similar manner to incorporate
fluctuation phenomena.

Some possible forms of the entropy fluctuation law have
been investigated. The exponential form naturally produces
the Gibbs canonical distribution for thermal fluctuations.
Nonextensive entropies, such as the Tsallis entropy, can also
be seen to arise naturally in this approach. Further investiga-
tion is needed to explore the consistency of different f func-
tions. In particular, the requirement that the mean heat ex-
tracted over a cycle is nonpositive, 
	iQi /Ti��0, may be
expected to further constrain which functions are admissible.
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APPENDIX: ENTROPY FUNCTIONS FOR IRREVERSIBLE
CYCLES

Suppose there exists a path dependant quantity, 
AB
� �a

property of a particular path �, in a state space, from state A
to state B� well defined for all paths �, states A and states B,
for which

∀�,�� 
AB
� + 
BA

�� � 0 �A1�

and that there exists at least one path from each A to each B
for which the corresponding value of 
 is finite so that
inf��
AB

� ���. Then there exists a nonempty convex set of
functions of state �S�X��, such that for all paths � and states
A and B:

S�A� � S�B� + 
AB
� . �A2�

Proof. Define 
AB=inf��
AB
� �. So 
AB

� �
AB.
As 
BA�� and 
AB�−
BA, then 
AB�−�.
By definition, the minimum value of 
 going from A to C

cannot be more than the value going from A to C via a path
including B:


AC � 
AB + 
BC �A3�

so


AC − 
AB � 
BC, �A4�


AB − 
AC � − 
BC, �A5�


AC − 
BC � 
AB, �A6�


BC − 
AC � − 
AB. �A7�

Define the set of functions of state �SiY�X�� by

S+A�X� = 
XA, �A8�

S−A�X� = − 
AX. �A9�

These are clearly well-defined finite functions of state, and
they exist so the set �SiY�X�� is not empty. Note that as

XX=0:


XY = S+Y�X� − S+Y�Y� �A10�

=S−X�X� − S−X�Y� �A11�

and

S+A�X� − S+A�Y� = 
XA − 
YA, �A12�

S−A�X� − S−A�Y� = − 
AX + 
AY . �A13�

It follows that for any A,

S+A�X� − S+A�Y� � 
XY � 
XY
� �A14�

�− 
YX � − 
YX
� , �A15�

S−A�X� − S−A�Y� � 
XY � 
XY
� �A16�

�− 
YX � − 
YX
� , �A17�

and it is then easily demonstrated that for any distribution
	iYw�iY�=1, w�iY��0, that the weighted function of state

S�X� = 	
iY

w�iY�SiY�X� �A18�

satisfies

S�A� − S�B� � 
AB
� �A19�

as

− 
YX
� � − 
YX = S+X�X� − S+X�Y� � SiA�X� − SiA�Y�

� S+Y�X� − S+Y�Y� = 
XY � 
XY
�� . �A20�

Note that the set �	iYw�iY�SiY�X�� does not necessarily in-
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clude all the functions which satisfy the inequality of Eq.
�A2�. It only demonstrates the existence of a nonempty set of
such functions.

It is now a trivial matter to show from Eq. �A20� that
whenever the equality in Eq. �A1� can be reached, that all

functions in the set �	iYw�iY�SiY�X�� �indeed, all functions
satisfying Eq. �A2�� will give the same entropy difference
between states A and B. By extension, if the equality in Eq.
�A1� can be reached for all pairs of states, then there is a
single function, S�X�, unique up to an additive constant.
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